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Abstract

Learning-based motion planning methods such as 
reinforcement learning (RL) have shown great poten-
tial of improving the performance of autonomous 

driving. However, comprehensively ensuring safety and 
efficiency remain a challenge for motion planning tech-
nology. Most current RL methods output discrete behav-
ioral action or continuous control action, which lack an 
intuitive representation of the future motion and then 
face the problems with unstable or reckless driving 
behavior. To address these issues, this work proposes an 
interaction-aware reinforcement learning approach based 
on hybrid parameterized action space for autonomous 
driving in lane change scenario. The proposed method 
can output high-level feasible trajectory and low-level 
actuator control command to control the vehicle’s motion 
together. Meanwhile, the reward functions for the local 
traffic environment are designed to evaluate the effect 

of the interaction between ego vehicle and surrounding 
vehicles. The contributions of the proposed method are: 
1) propose a hybrid parameterized action based interac-
tion-aware DRL framework (HPA-IDRL); 2) the proposed 
HPA-IDRL can learn from the reward not only considering 
self-benefits but also considering the benefits of the local 
traffic environment; 3) A multi-head attention layer is 
embedded before actor network and critic network 
respectively to exploit the interactive information in the 
traffic environment. Thus, the HPA-IDRL agent can 
generate more flexible and smooth driving behavior, 
which improves the safety and the efficiency of autono-
mous driving. The proposed method is implemented and 
validated with other four advanced DRL model in various 
simulation environments. The results demonstrate that 
the proposed HPA-IDRL can effectively balance the flex-
ibility and smoothness of driving behavior, leading to the 
improving performance that is both safe and efficient.

Introduction

Autonomous driving technology has good potential 
to improve driving safety and traffic efficiency [1, 2]. 
Some Robotaxi and Robobus products have been 

deployed on public roads, such as Baidu-Apollo in Wuhan, 
Changsha, and Waymo in San Francisco, and others. 
However, according to corresponding reports, many 
takeover incidents are still recorded and the autonomous 
vehicles being criticized for causing traffic jams by driving 
slowly and stopping unexpectedly. [3, 4] Therefore, 

autonomous driving technology still has a long way to go 
in terms of safety and flexibility.

Motion planning, broadly defined to include behavioral 
decision-making, trajectory planning, and motion control, 
is regarded as the brain of autonomous driving [5]. The 
results of motion planning directly determine the intelli-
gence of the autonomous driving system [6]. The motion 
planning module receives perception information and 
enables autonomous vehicle to make corresponding 
motion maneuvers, which makes a significant impact on 
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the safety, efficiency and comfort performances of auton-
omous vehicles [7].

Traditional rule-based techniques had played an 
important role in motion planning of autonomous driving 
technology [2]. They describe behavior models intuitively 
according to vehicle motion models, traffic rules and 
driving experience [8].

Early rule-based motion planning methods separate 
behavioral decision-making and trajectory planning 
completely. The Decision-making approaches include 
Finite State Machines (FSM) [9], Behavior Tree (BT) [10] 
and Markov Decision Process (MDP) [11], etc. They often 
generate the semantic behavior and then plan the feasible 
trajectory through curve-based or sample-based methods 
[12, 13]. Their models are simple to construct but have 
limited application conditions. Optimization methods, 
such as Model Predictive Control (MPC), have subse-
quently been widely used to integrate decision making 
with trajectory planning and motion control [14]. Artificial 
Potential Fields (APF) can be well adapted to MPC frame-
work to provide a reference for design of objective 
function and constraint [14]. In [5], the authors use Game 
Theory to generate high-level semantic behaviors, which 
are provided to MPC problem to solve the low-level 
control command. [15] combines discrete lane with contin-
uous vehicle kinematics model, and then construct a 
hybrid MPC problem to simultaneously solve semantic 
behavior and motion control command.

In recent years, learning-based motion planning 
method represented by imitation learning (IL) and rein-
forcement learning (RL) are widely studied. These methods 
can learn a complex driving policy from driving data, and 
have been become a highly promising paradigm for 
autonomous driving. IL can directly fit the optimal driving 
strategy distribution from the dataset [16], while it needs 
large amount of expert data and still face distribution 
shift problems [17]. Unlike IL, RL agent generates policies 
by interacting with the environment and evaluating itself 
with the reward function, which not rely on marked data 
and allows the performance to exceed human-level [18]. 
This method is modeled based on MDP with long-term 
rewards to construct the task of autonomous driving in 
complex environments. Deep reinforcement learning 
(DRL) combined with deep neural networks (DNN) has 
excellent nonlinear approximation capability and can 
generate intelligent policy in a model-free manner [19]. 
DRL motion planning methods has been tried and 
achieved great effects in many scenarios such as lane 
changing, merge, intersection, etc. [20, 21]. However, most 
current DRL motion planning methods frequently encoun-
tered problems including unstable action output and 
unsafe maneuvers, which may lead to uncomfortable 
driving experience and even collision accident.

On one hand, the previous work involved two main 
types of action space design approaches, including 
discrete semantic behavior actions and continuous 
actuator control command actions [22]. They both directly 
utilize the RL’s output action to control the vehicle. For 
discrete semantic behavior, these actions have a limited 
effect on vehicle’s maneuvering because there are 

planning and control module after behavior decision. For 
continuous actuator control command, it is easy to lead 
the fluctuation of the vehicle’s motion since it directly 
controls the vehicle. Both two classes methods lack an 
intuitive representation of future motion, which has 
unstable action output and prevents full confidence in 
current DRL output actions [23]. Some work attaches 
rule-based planning/control methods after the DRL 
output action, such as DQN method, to generate feasible 
path and then track it [24]. However, this method actually 
generates the candidate trajectory set based on a finite 
discrete action space, which loses the flexibility of the DRL 
policy and thus may lead to overly conservative maneu-
vers, which defeats the original purpose of using DRL to 
solve autonomous driving problems [25]. The above action 
architecture lack the detailed analysis and implementation 
combination of the vehicle’s driving behavior. Therefore, 
it is always challenging for them to comprehensively 
improve the driving safety and efficiency.

On other hand, DRL learn the optimal policy according 
to the long-term reward to generate smarter behaviors. 
Since RL agent focuses on maximizing the reward 
function, it is likely to explore unsafe behaviors during the 
learning process and even after training [26]. It is hard for 
RL agent to simultaneously learn safety and other goals 
such as efficiency through a single reward function [27]. 
In addition, focusing only on own safety rewards and 
ignoring the impacts that the ego vehicle brings to the 
surrounding environment also tends to increase the 
overall potential risk and reduce the travel efficiency of 
the local traffic environment [28]. Although DRL implicitly 
models the interaction mechanism between the ego 
vehicle and the surrounding vehicles, it is still difficult to 
learn it well based only on directly observed states and 
the egoist reward function. This indirect unsafety is not 
currently well considered in the frameworks of single 
agent DRL, which makes it difficult for RL agent to under-
stand the environment changes well, and makes them 
prone to overly aggressive or conservative behavior.

To address these problems above, this paper 
proposes an interaction-aware reinforcement learning 
approach based on hybrid parameterized action space 
for autonomous driving. The focus of this work is to make 
DRL agent generate flexible and safe maneuvers in lane 
change scenario. It can output high-level feasible trajec-
tory and low-level actuator control command to control 
the vehicle’s motion together. Meanwhile, the reward 
functions for the local traffic environment are designed 
to evaluate the effect of the interaction between ego 
vehicle and surrounding vehicles. The contributions of the 
proposed method are summarized as following:

	 1).	 DRL with Hybrid Parameterized Action: 
We propose a hybrid parameterized action based 
interaction-aware DRL framework (HPA-IDRL). It 
can output the parameterized action to generate 
feasible lane change path. Lateral control 
command through rule-based tracking module 
and the longitudinal control command output by 
DRL agent are executed on vehicle system 
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together, which improves the stability of the 
lateral motion behavior while keeps the flexibility 
of the output by the DRL agent.

	 2).	 Multi-Critic Learning with Interaction Rewards: 
The proposed HPA-IDRL can learn from the 
reward not only considering self-benefits but also 
considering the benefits of the local traffic 
environment. Interaction rewards are designed to 
describe the driving cost of the interactive 
behavior between ego vehicle and surrounding 
vehicles. Multiple critic networks are designed to 
evaluate Q values based on different reward 
functions, allowing RL agents to better focus on 
different driving object.

	 3).	 Interaction-Aware Actor-Critic Mechanism: 
To make DRL agent better understand the 
interaction character from the traffic environment, 
multi-attention mechanism is used to extract the 
state input feature. A multi-head attention layer 
is embedded before actor network and critic 
network respectively to exploit the interactive 
information in the traffic environment. Thus, 
the DRL agent can generate more flexible and 
safer actions.

The remainder of this work is organized as: Section 
II introduces some algorithm background. In Section III, 
the proposed HPA-IDRL approach is described in detail. 
Section IV is the specific implementation. And then in 
Section V, simulation testing and discussion are presented. 
Finally, Section VI concludes this work.

Background and Problem 
Definition

Reinforcement Learning
The motion planning problem of autonomous diving in 
RL is often modeled as a Markov decision process (MDP) 
by the tuple γ, , , ,  R , where the S is the state space: 
s∈ ,   is the action space: a∈ , R  is the reward 
function based on current state and action: 

( )r s a∈ =, ,R    is the system dynamics transiting to 
next state s′ when the RL agent take an action a, and the 
γ∈(0,1] is a discount factor to decay future rewards. The 
policy π is a distribution of over action according to state, 
i.e. π(s|a). The goal of RL is to learn an optimal policy π*, 
which maximizes the long-term expected discounted 

return k
t t k

k

rγ
∞

+

=

=∑
0

R at every time step t:

	 ( )t
t t tr s a

π π
π γ∗   = = ∑   argmax argmax , R 	 (1)

It is usually to estimate the state-action-value 
(Q-value) function by the Bellman Equation to find the 
optimal policy, which can be defined as:

	 ( ) ( ) ( )t t t t ts a r s a s aγ + +
 = +  1 1, , ,  	 (2)

and then the optimal policy π*can be obtained by 
maximizing the t (s, a). The DRL aims to estimate the 
max Q-value function ( ) ( )t s a s aπ

π
∗ =, max ,   by a DNN 

with weight parameters θ as t  (s, a; θ)[19]. The temporal 
difference (TD) error

	 ( ) ( ) ( )t t t t t t t
a

r s a s a s aδ θ θ+ += + ; ; −′ ; ;1 1, max , , , , γ 	 (3)

is used to optimize the weight parameters of evaluate 
network (θ) and target network (θ’) by the gradient 
descent with the loss function ( )t tθ δ= 2 .

Problem Definition
Considering the DRL motion planning, it would be desir-
able if the RL agent could provide the trajectory or path 
of its future motion, although this is really challenging. A 
natural idea is to let the DRL output action to participate 
generating trajectory. As mentioned in Introduction 
Section, candidate trajectory set based on finite discrete 
RL semantic actions loses the flexibility of the DRL policy.

Focusing on the lane-change maneuver, the lateral 
lane-changing behavior is usually discrete under struc-
tured roads, while the specific length of the lane-changing 
trajectory varies continuously according to the actual 
scenarios. Therefore, this work proposes an interaction-
aware DRL framework based on hybrid parameterized 
action (HPA-IDRL), in which we design a hybrid action 
space including: 1) discreate lane-change semantic 
behavior b, 2) continuous lane-change trajectory longitu-
dinal length l, and 3) continuous real-time acceleration 
value acc. On this basis, an interaction-aware reinforce-
ment learning approach is design with multi-critic evalu-
ation and multi-head attention mechanism. The DRL 
agent can better understand the state feature relevance 
of surrounding vehicles，and better update the policy 
network through multi-critic using interaction-
aware rewards.

The framework of the proposed approach is shown 
in Figure 1, which mainly consists of the DRL agent and 
the traffic environment. The DRL agent generates the 
action from the observed states from ego vehicle and 
surrounding vehicles. These states are encoded into 
feature vectors, go through multi-head attention layers 
and then decoded as the continuous actions(accbi, lbi)for 
all possible discrete action bi. They are further encoded 
together with the observed states through attention 
layers and multi-Critic layers, thereby synchronously 
generating optimal discrete semantic behavior b. Thee 
parameterized actions (b, l)are used to generate feasible 
trajectory and further output steering angle δf through a 
rule-based trajectory following module. δf and acc are 
executed on the vehicle system to control the vehicle’s 
motion, which enhances the stability of lane-change 
maneuvers to a certain extent while also keep the flexi-
bility of the DRL policy.
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Approach Detail

DRL with Hybrid Parameterized 
Action
The action space is designed as acc:

	 ( ){ }b bb l acc l L acc A b B = ∈ ∈ ∈  , , | , for 	 (4)

where Lb, Ab, and [B] is the subspace of the action 
respectively. The Bellman Equation (2) can be written as:

( )

( ) ( )
t t

t t t t
b b

t t b b

t t b b t b b
b B L A

s b l acc

r s b l acc s b l accγ
+ ++

 ∈ 

=

  
+   

  
1 11

,

, , ,

, , , max sup , , ,




	 (5)

The DRL with parameterized action space learns 
concurrently from four DNNs, including two Actor-
networks (evaluate network: μ(θμ) and target network: 
μ′(θμ′)) and two critic-networks (evaluate network: ( )t θ  
and target network: ( )θ ′′  ). During the training, it is 
hope to find a set of θμ to maximize the ( )t θ  for each 

b ∈ [B] (such as Eq. (5)). Therefore, the loss functions for 

networks update process are defined as follows:

	

t t t t
b B

t t t t

t tb

y r s b s

y s b s

s b s

µ

µ

µ µ

γ µ θ θ

θ µ θ θ

θ µ θ θ
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+ +
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 





 

 

	 (6)

Thus, the output action (bt, lt, acct) can be obtained 
simultaneously by:

	
t

t t t t t t t
b B

b l acc s b s µµ θ θ
∈

==
[ ]

( , , ) argmax ( , , ( | ) | ) 	 (7)

Multi-Critic Learning with 
Interaction Rewards
In the real environment, the action selection of actor-
network needs to evaluate multiple object goals. However, 
there is a coupling of evaluation metrics in a single 
reward function in one critic-network in typical Actor-
Critic DRL, which creates turbulent phenomenon in the 
training process and leads to inefficient learning [29]. In 
addition, using a single value function shared over 
multiple objects can result in negative interference 
between different objects, which can compromise 
learning performance [27].

This work proposed multi-Critic Network with inter-
action reward functions, aiming to effectively guide the 
iterative updating of the actor-network by evaluating the 
generated policy from multiple perspectives, including 
from EV itself and from the surrounding traffic environ-
ment. The reward functions are designed as:

	
{ }
( ) ( )

t m t

m t

r m M

r g EV g EV SVs

 = ∈  
=

,

,

, 1,

or ,

r
	 (8)

where rm,t is the reward function designed for the mth 
critic-network, M is the number of critic-networks. In this 
work, the rm,t includes not only the egoist gain g(EV), but 
also the interaction-aware gain of the local traffic with 
surrounding vehicles g(EV, SVs). Therefore, for multiple 
Q-value functions, the Bellman Equation (5) can 
be rewritten as:

{ }

t t

t t
b b

m t t b b m

m t m t b b m
b B L A

m t m t t t m
b B

s b l acc

r s b l acc

r s b s µ

θ

γ θ

γ µ θ θ

+ ++
∈

+ + +
∈

  
= +   

  

 +=   

1 1, 1
[ ] ,

, 1 1 1
[ ]

( , , , | )

max sup ( , , , | )

max ( , , ( | ) | )

















	 (9)

	 t t

M

all m m t t b b m
m

s b l accω θ
=

=∑
1

( , , , | )  	 (10)

where mθ
  is the network parameter of the mth critic-

network, t tb b mm t ts b l acc θ( , , , | )  is the Q-value of mth 
evaluate, and ωm is the corresponding weight of the 
Q-value. Then, the target value function can be defined as:

	 m t m t m t t m
b B

y r s b s µγ µ θ θ′ ′
+ +

∈
′ ′= +, , 1 1

[ ]
max ( , , ( | ) | ) 	 (11)

The corresponding loss functions for multiple critic-
networks are as following:

	 m m t m t t t my s b s µθ µ θ θ ′
+ + +

 = − 
2

, 1 1 1
1( ) ( , , ( | ) | )
2

   	 (12)

  FIGURE 1    Conceptual framework of the proposed HPA-
IDRL.
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Interaction-Aware Actor-Critic 
Mechanism
In this section, multi-head self-attention and ego-attention 
[30] layers are embedded in the DRL structure to better 
exploit the interactive information in the traffic 
environment.

The Multi-Layer attention mechanism for the actor-
network is shown in Figure 2(a). The input vectors are the 
state features of EV and SVs from a linear encoding layer 
whose weights are shared between all vehicles. They are 
then fed to a multi-head self-attention layer, which is 
composed of several heads stacked together. The output 
is then fed to a multi-head ego-attention layer, while only 
the first element s

fΦ( )
,1  of the output s

f iΦ( )
, , i.e., the self-

attention feature of the EV, emits a single query e
QΦ( )  with 

a linear projection. The remain elements of s
f iΦ( )
,  are 

emitted as the keys and values. The final output e
FΦ( )  from 

all heads is decoded to obtain the mean and variance of 
Gaussian-distribution for the DRL actions.

As shown in Figure 2(b), for the critic-network, there 
is only a multi-head ego-attention layer, while the final 
output is decoded with multiple linear layer to get the 
Q-value m  of each critic-network.

Specific Implementation

Observation States and Action 
Design

State  In this work, the DRL agent observe the informa-
tion of the SVs in neighboring lanes and of EV itself by,

	 { }i i i i ix iy i
p x y v vϕ

∆

=
 =   0, ,8

, , , , ,


 	 (13)

which consists of the flag pi indicating whether the 
ith car is observed or not (for EV, p0 is always equal to 1), 
the position xi, yi and the heading angle φi in road coor-
dinate, and the speed vix ,viy in lateral and longitudinal 
directions. i=0 represents the EV and i=1~8 represents 
the SVs. It is assumed that SVs outside the neighboring 
lanes are not considered. The DRL agent controlling the 
EV can observe SVs within the observation range Lfront = 
160 m and Lback = 80 m, as shown in Figure 3.

Action  At every time step t, the DRL agent choose the 
discrete action and generate the Gaussian-distribution 
parameters of continuous action simultaneously. The 
discrete action space means the lateral semantic lane-
change behaviors [B]: {-wr}: ‘left lane change’, {wr}: ‘right 
lane change’, {0}: ‘keep current lane’, where wr is the road 
width. The continuous action space includes the longitu-
dinal length Lb ∈ [Lbmin, Lbmax] of the desired trajectory 
and the acceleration Ab ∈ [Abmin, Abmax].

	 { }b bB L A =   , , 	 (14)

With the parameterized action (b, l), the desired 
trajectory at current time step can be generated as:

t k t k t k t k t k t ky x x x x xα α α α α+ + + + + += + + + +5 4 3 2
0, 5 0, 4 0, 3 0, 2 0, 1 0, 	 (15)

  FIGURE 2    Multi-Layer attention mechanism for the actor-Network: (a) multi-attention layer embedded in actor-network, (b) 
ego-attention for critic-network.

  FIGURE 3    Environment states and the observation range.
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where (x0, t + k, y0, t + k) is the position of the waypoint 
at the t+k time step, k∈[1, Kp], Kp is the planning horizon. 
The heading angle φ0, t + k can be obtained through differ-
ential algorithm, and the corresponding weight α1~5 can 
be calculated according to the position constraints of the 
current position and the target position:

	
p p p p p p

t t t t t t

t K t K t K t K t K t K

y x x x x x
y x x x x x

α α α α α
α α α α α+ + + + + +

 = + + + +


= + + + +

5 4 3 2
0, 5 0, 4 0, 3 0, 2 0, 1 0,

5 4 3 2
0, 5 0, 4 0, 3 0, 2 0, 1 0, 	

(16)

	

p

p

t K t

t

t K t

t

x l

w b left lane change
y b keepcurrent lane

w b right lane change

+

+

 =


 =
 = =
 − = 

0,

' '

' '
0,

' '

, if  
0, if  

, if  

	 (17)

The acceleration acc is executed on the vehicle 
system with the steering angle δ f, which is obtained 
through a rule-based trajectory following module 
using Stanley model, with the input of the desired 
trajectory.

Reward Functions
In this work, we construct two critic-networks with two 
different rewards: egoist reward and interaction-
aware reward.

Egoist Reward  The goal of the DRL agent is to drive at 
the desired speed as much as possible without collision. 
Thus, the egoist reward consists of self-safety reward, 
the efficiency reward, the comfort reward and the behav-
ioral continuity reward. The self-safety reward focus on 
whether EV has collision with SVs, i.e. rsafe = -1 when colli-
sion happened, otherwise rsafe =0. The efficiency reward 
reff is the is the absolute value of the difference between 
the v0x and the desired speed vdes, i.e. | v0x - vdes |. The 
comfort reward rcomf prefers the steering angle δf and 
acceleration acc to be as close to zero as possible. At last, 
there is a behavioral continuity reward rcon to punish jittery 
semantic behavior. As summary, the egoist reward can 
be defined as follows:

	

( )

( )

t t safe eff comf con

safe

x des
eff

des

f t
comf

t

con t t

r g EV r r r r

r

v v
r

v

acc
r

acc

r b b

δ

δ

−

= = + + +

= 


−
= −

 
 = − +
 
 

= − −

1, 1,

0

max max

1

0.5 0.3 0.1 0.1

0,coliision
1 ,else

1

1 0.5 0.5

1

	 (18)

Interaction-Aware Reward  In a lane-changing maneuver, 
the EV inevitably affects the rear SV in the target lane, 
which indirectly affects the behavior of the SVs traveling 
within the neighborhood in the target lane. In order to 
consider the impact of the behavior of the EV on the local 
traffic system (consists of the EV and the SVs in the target 
lane), EV and SVs are modeled as lane-change game 
participants inspired by the game theory [5]. The inter-
action-aware reward function is designed from the 
perspective of equilibrium of both parties’ gains, which 
also includes the cost of safety and efficiency. The safety 
cost Csafe consists of lateral and longitudinal safety for 
both EV and SVs:

	
( )

( )

( )
( )

lat

lon

safe safe lat safe lon

K

lat
safe lat lat y ky

k y ky

K

lat
safe lon lon x kx

k x kx

C C C

C v v
y y

C v v
x x

κκ

κκ

=

=

= +

 
 = − +
 −  
 
 = − +
 −  

∑

∑

, ,

2 2
, 1 0 2

0 0

2 2
, 1 0 2

0 0

	 (19)

where Klat and Klon represent the SVs in two direc-
tions. The efficiency cost Ceff consists of the efficiency 
reward of both EV and SVs, such as

	 eff i ix des

k

C p v v
=

= −∑
8

0

	 (20)

Hence, the interaction-aware reward can be written as:

	 ( )t t safe effr g EV SVs C C= = +2, 2, , 	 (21)

Training and Testing Process
The proposed HPA-IDRL is trained in a Highway-Env open 
source simulator [31]. The training environment is a three-
lane highway scenario, the SVs are generated randomly 
on each lane with random initial position and speed with 
the designed traffic density dt. Additionally, some advanced 
DRL baseline model including DQN [23], PPO [32], SACc 
[33] (with continuous command actions of steering angle 
and acceleration), and SACh [34] (with hybrid actions of 
trajectory parameters and acceleration, but it is cut off 
the continuous action directly to get discrete action). The 
difference between these five DRL agent is listed in Table 1. 
All the DRL agents are trained for 10,000 episodes in 

TABLE 1  Difference between each DRL agent

DQN PPO SACc SACh HPA-IDRL
Discrete semantic 
behavior

✓ × × × ✓

Continuous control 
command

× ✓ ✓ ✓ ✓

Trajectory 
parameterized action

× × × ✓ ✓
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same environment for 5 times with different random 
seeds, and then the trained DRL agents are tested in two 
scenarios: scenario 1 is same as the training (traffic density 
dt = 0.3), and scenario 2 is a more congested traffic envi-
ronment then training (traffic density dt = 0.5), which can 
be used to analyze the performance of different agent 
far from the training scenario. For all DRL agents, the 
encoder and decode layers of each network are both 
[64×128×64] units. Some parameters of training and 
testing process are listed in Table 2.

Results and Discussion

Evaluation Metrics
In this work, the driving goal of EV is to drive in the 
highway as far as possible and avoid to colliding with SVs. 
Serval metrics are used to evaluate the performance of 
the proposed method.

	 1).	 gained reward: For every DRL agent, the gained 
reward is always the most frequently used 
evaluation metric, which comprehensively 
assesses the agent’s performance on a given task

	 2).	 collision rate: Safety is a fundamental 
requirement for autonomous driving. The collision 
rate provides a intuitive measure of how safe an 
agent is to drive.

	 3).	 average speed: Driving efficiency is also a 
noteworthy metric. The average speed, along with 
the collision rate, can be used to evaluate the 
agent's intelligence together.

	 4).	 number of lane-change: This metric gives some 
indication of the driving flexibility. It can 
be analyzed together with the average speed to 

find out more about the reasons why the vehicle 
is driving more efficiently.

	 5).	 variance of steering angle and 6) variance of 
acceleration: These metrics can be used to 
evaluate the improvement of the proposed 
algorithm on the stability of driving behavior. 
Simply increasing the number of lane-change may 
mean unstable behavior, and autonomous vehicle 
should improve the stability of driving behavior 
while ensuring flexibility to obtain efficient driving 
with concise maneuvers.

We compare our proposed methods and baselines 
in the following aspects:

•• Overall Performance: Both in training and testing 
process, the overall performance represented by the 
1) reward gained from RL agent. It can directly 
indicate the convergence of the RL algorithm and its 
approximate policy effectiveness.

•• Safety Performance: This performance is reflected 
by the 2) collision rate metric. The lower the collision 
rate of the agent during training and testing, the 
safer the vehicle is driving. It is important to note 
that driving off the road boundary is also considered 
to be a collision.

•• Flexibility Performance: An excessive focus on 
safety may lead to overly conservative driving policy. 
Autonomous vehicles need a certain degree of 
flexibility to adapt to complex scenarios, which is 
also a key reflection of the intelligence of 
autonomous driving algorithms. Flexibility can 
be measured by the 3) vehicle’s average speed and 
4) the number of lane changes. If the lane change 
frequency is high but the average speed remains 
low, it may indicate ineffective lane-change 
maneuvers. Moreover, these lane- change 
maneuvers are required to be safe. Reckless lane 
change does not imply flexibility. We expect EV to 
achieve faster speed with fewer lane changes, which 
requires EV to react flexibly and quickly. For instance, 
when the SV ahead is driving slowly and there is 
sufficient gap in the target lane for overtaking, EV 
should quickly complete the lane change maneuver 
to improve driving efficiency.

•• Stability Performance: 5) variance of steering angle 
and 6) variance of acceleration are used to describe 
the stability of driving maneuvers. Greater 
granularity of the action space can bring about 
flexibility as well as instability in the action output. 
However, no one wants to see autonomous vehicle 
jerking or swaying from side to side on the road.

Training Results
The learning curves of total reward in training process 
are shown in Figure 4. All the agents were trained 5 times. 
Figure 4. shows their average reward curves and the 
corresponding variance distributions. It can be seen that 

TABLE 2  Parameters of DRL agent and simulation 
environment for training process

Parameter value
Traffic density dt in training 0.3
Traffic density dt in testing 0.3 and 0.5
Number of training episodes 1250
Number of Testing episodes 100
Max length of episode 100
Learning rate 0.0001
Discount factor γ 0.8
Road width wr 3.5 m
Vehicle length 5.0 m
Vehicle width 1.8 m
Policy frequency 10 Hz
Ego-attention head 8
Self-attention head 8
Experience replay buffer size 30,000
Mini-batch buffer size 256
Activation function ReLU
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the proposed HPA-IDRL is able to achieve the highest 
reward convergence with a small fluctuation. DQN, PPO 
and SACh have similar results. Since DQN can only outputs 
long time-term discrete semantic actions, the distribution 
of the gained rewards are more concentrated during 
multi-times training. The convergence performance of 
DQN is the worst of all methods. PPO, SACc, and SACh 
have more variations in the rewards of the convergence 
process due to the greater granularity of the action space. 
Although this also brings a certain training instability, they 
all eventually converge to a slightly better performance 
relative to DQN. It is worth noting that SACc not gained 
reward in the early training stages due to the continuous 
control commands to directly control the vehicle. EV 
would frequently collide with SVs or road boundary. The 
policy network could not be updated until enough experi-
ences have been collected in the experience replay batch. 
And then, SACc start learning in a right way to get higher 
rewards and eventually converge to a nice level as well 
as other agents. Figure 5. shows the learning curve of 
episode length, and their changing trends look similar to 
Figure 4. After convergence of, HPA-IDRL can reach almost 
full episodes length. which means that our proposed 
method can make the vehicle travel safely in the traffic 
until the end of the episode. This is one of the main 
reasons why it is able to harvest the most total reward. 
As a comparison, other methods still fall short in terms 
of episode length, which implies that collisions still often 
occur eventually.

Testing in Scenario 1
The first testing scenario is same as training (where the 
traffic density is set to 0.3), except for the random seed 
used in the SVs generation. Figure 6. illustrates the testing 
results of different DRL agent, including the average 
reward (Figure 6. (a)), average speed (Figure 6.(b)), the 
variance of steering angle (Figure 6.(c)) and of acceleration 
(Figure 6.(d)). These results show that the proposed 

method achieves the best performance in the test. 
Specifically, DQN has a low steer variance while a high 
acceleration variance. It means that the discrete semantic 
lateral behavior facilitates lateral driving stability, whereas 
it leads to longitudinal driving instability due to fewer 
choices of discrete acceleration actions. The average 
speed of PPO and SACc are really low, and they also have 
high steer variance. It suggests that their driving behavior 
is very unstable while driving inefficiently. SACc and HPA-
IDRL utilize trajectory parameters that greatly enhance 
the stability of driving behavior. It is worth nothing that 
the proposed HPA-IDRL has the fastest average speed, 
which means the highest driving efficiency. It also has low 
variance of steering angle and acceleration, indicating EV 
achieves high-efficiency driving with smooth action.

  FIGURE 5    The episode length of different DRL agent in 
training process.

  FIGURE 6    The testing results of different DRL agent in 
scenario 1, (a) average reward, (b) average speed, (c) 
acceleration variance, (d) steer angle variance.

  FIGURE 4    The total reward of different DRL agent in 
training process.
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The quantitative statistical results are shown in Table 
3, which demonstrates that, HPA-IDRL surpass all other 
agents. Taking DQN as a baseline algorithm, PPO and SACc 
agent can reduce the collision rate by approximately 88% 
and 96%. However, from the average speed and the average 
number of lane-change, it can be found that the reason for 
the low collision rate is that agents’ maneuvering is too 
conservative. They lose about 25% and 27% of the average 
speed, while decreasing the number of lane changes by 
43% and 77%. This may be because the actions of completely 
continuous control command are heavily influenced by the 
reward for tracking the reference path and the smoothness 
reward. As a result, the PPO and SACc agents tend to follow 
SVs at a very conservative speed. By generating trajectories, 
SACh and HPA-IDRL are able to significantly improve maneu-
vering flexibility while maintaining smoothness. Due to the 
lack of optimal consistency for discrete, continuous actions, 
the collision rate of SACh increases again to 10%, while the 
HPA-IDRL remains only 3%. Additionally, HPA-IDRL exhibits 
higher average speed and lower variance of both steering 
angle and acceleration. This is thanks in large part to the 
multi-critic with interaction reward and the 
interaction-aware attention mechanism. This enables the 
EV to better understand the surrounding traffic environ-
ment and output sample, smooth but efficient actions.

The results demonstrate that the proposed method 
effectively balances flexibility and smoothness, resulting 
in driving behavior that is both safe and efficient.

Testing in Scenario 2
In the scenario 2, the traffic density is increased to 0.5, 
which deviates a little from the training scenario. 
Therefore, the average speed of all agents is decreased 
and the collision rate is increased due to the more 
crowded traffic environment. Figure 7 and Table 4. Show 
the performance detail of different agents in this scenario. 
As in Scenario 1, HPA-IDRL achieves the best overall 
performance in all metrics. It achieves the highest average 
speed and lowest variance of control command while 
maintaining low collision rate. It is worth noting that the 
variance of steering angles and acceleration decreased 
for all agents. By observing the number of lane-change, 
it can be seen that due to the increase in traffic density, 

some lane-change maneuvers are replaced by car 
following maneuvers. Thus, in this situation, both speed 
and control fluctuations decrease accordingly. In summary, 
relatively unfamiliar test scenario tends to reduce the 
performance of all agents, but the proposed HPA-IDRL 
still maintains good safety, efficiency, and high driving 
behavior stability.

Conclusions
This paper proposes an interaction-aware reinforcement 
learning approach based on hybrid parameterized action 
space for autonomous driving in lane change scenario. 
The proposed method can output high-level feasible 
trajectory and low-level actuator control command to 
control the vehicle’s motion together. Meanwhile, the 
reward functions for the local traffic environment are 
designed to evaluate the effect of the interaction between 
ego vehicle and surrounding vehicles. The contributions 

TABLE 3  Statistical quantitative results of different DRL agent 
in scenario 1.

metric
agent DQN PPO SACc SACh HPA-IDRL
average reward 0.88 0.90 0.89 0.93 0.95
collision rate (%) 0.51 0.06 0.02 0.10 0.03
average speed (m/s) 11.05 8.32 8.09 11.92 12.35
average lane-
change number

9.77 5.61 2.22 6.98 7.59

steering angle 
variance (rad2)

32e-4 65e-4 85e-4 16e-4 14e-4

acceleration 
variance (m2/s2)

1.03 0.82 0.73 0.34 0.30

  FIGURE 7    The testing results of different DRL agent in 
scenario 2, (a) average reward, (b) average speed, (c) 
acceleration variance, (d) steer angle variance.

TABLE 4  Statistical quantitative results of different DRL agent 
in scenario 2.

metric
agent DQN PPO SACc SACh HPA-IDRL
average reward 0.87 0.89 0.90 0.92 0.94
collision rate (%) 0.56 0.09 0.04 0.12 0.04
average speed (m/s) 8.7 7.98 8.15 10.7 11.45
average lane-
change number

7.62 4.99 2.20 6.31 6.86

steering angle 
variance (rad2)

19e-4 42e-4 45e-4 18e-4 13e-4

acceleration 
variance (m2/s2)

0.78 0.85 0.61 0.29 0.22
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of the proposed method are summarized as: 1) propose 
a hybrid parameterized action based interaction-aware 
DRL framework (HPA-IDRL). It can output the parameter-
ized action to generate feasible lane change path, which 
improves the stability of the lateral motion behavior while 
keeps the flexibility of the output by the DRL agent; 2) 
the proposed HPA-IDRL can learn from the reward not 
only considering self-benefits but also considering the 
benefits of the local traffic environment. Multiple critic 
networks are designed to evaluate Q values based on 
different reward functions, allowing RL agents to better 
focus on different driving object; 3) A multi-head attention 
layer is embedded before actor network and critic 
network respectively to exploit the interactive information 
in the traffic environment. Thus, the HPA-IDRL agent can 
generate more flexible and smooth driving behavior, 
which improves the safety and the efficiency of autono-
mous driving. The proposed method is implemented and 
validated with other four classic DRL agent in different 
simulation environments. The results show that the 
proposed HPA-IDRL can effectively balance the flexibility 
and smoothness of driving behavior, resulting in driving 
performance that is both safe and efficient.
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